Practical forward secure signatures using minimal security assumptions
نویسنده
چکیده
Digital signatures are one of the most important cryptographic primitives in practice. They are an enabling technology for eCommerce and eGovernment applications and they are used to distribute software updates over the Internet in a secure way. In this work we introduce two new digital signature schemes: XMSS and its extension XMSS . We present security proofs for both schemes in the standard model, analyze their performance, and discuss parameter selection. Both our schemes have certain properties that make them favorable compared to today’s signature schemes. Our schemes are forward secure, meaning even in case of a key compromise, previously generated signatures can be trusted. This is an important property whenever a signature has to be verifiable in the midor long-term. Moreover, our signature schemes are generic constructions that can be instantiated using any hash function. Thereby, if a used hash function becomes insecure for some reason, we can simply replace it by a secure one to obtain a new secure instantiation. The properties we require the hash function to provide are minimal. This implies that as long as there exists any complexity-based cryptography, there exists a secure instantiation for our schemes. In addition, our schemes are secure against quantum computer aided attacks, as long as the used hash functions are. We analyze the performance of our schemes from a theoretical and a practical point of view. On the one hand, we show that given an efficient hash function, we can obtain an efficient instantiation for our schemes. On the other hand, we provide experimental data that show that the performance of our schemes is comparable to that of today’s signature schemes. Besides, we show how to select optimal parameters for a given use case that provably reach a given level of security. On the way of constructing XMSS and XMSS , we introduce two new one-time signature schemes (OTS): W-OTS and W-OTS. One-time signature schemes are signature schemes where a key pair may only be used once. W-OTS is currently the most efficient hash-based OTS and W-OTS the most efficient hash-based OTS with minimal security assumptions. One-time signature schemes have many more applications besides constructing full fledged signature schemes, including au-
منابع مشابه
XMSS - A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions
We present the hash-based signature scheme XMSS. It is the first provably (forward) secure and practical signature scheme with minimal security requirements: a pseudorandom and a second preimage resistant (hash) function family. Its signature size is reduced to less than 25% compared to the best provably secure hash based signature scheme.
متن کاملFrom Identification to Signatures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security
The Fiat-Shamir paradigm for transforming identification schemes into signature schemes has been popular since its introduction because it yields efficient signature schemes, and has been receiving renewed interest of late as the main tool in deriving forward-secure signature schemes. In this paper, minimal (meaning necessary and sufficient) conditions on the identification scheme to ensure sec...
متن کاملEfficient Generic Forward-Secure Signatures with an Unbounded Number Of Time Periods
We construct the first efficient forward-secure digital signature scheme where the total number of time periods for which the public key is used does not have to be fixed in advance. The number of time periods for which our scheme can be used is bounded only by an exponential function of the security parameter (given this much time, any scheme can be broken by exhaustive search), and its perfor...
متن کاملForward Secure Non-Interactive Key Exchange
Exposure of secret keys is a major concern when cryptographic protocols are implemented on weakly secure devices. Forward security is thus a way to mitigate damages when such an event occurs. In a forward-secure scheme, the public key is indeed fixed while the secret key is updated with a oneway process at regular time periods so that security of the scheme is ensured for any period prior to th...
متن کاملForward-secure RFID Authentication and Key Exchange
Security and privacy in RFID systems is an important and active research area. A number of challenges arise due to the extremely limited computational, storage and communication abilities of a typical RFID tag. This work describes two families of simple, inexpensive, and untraceable identification protocols for RFID tags. The proposed protocols involve minimal interaction between a tag and a re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013